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Abstract

We define a hypergraph by a set of associations which consist of nonexclusive
two or more players. It is a generalization of a graph (or a network) in the sense
that an association, the counterpart of a link in a hypergraph, connects any number
of nodes, not simply a pair of nodes. We characterize the efficient hypergraphs
and stable hypergraphs for the linear variable cost of associations. The efficient
hypergraph is either the empty hypergraph or the grand hypergraph consisting of
a single grand association. The stable hypergraph can be a grand hypergraph, a
star hypergraph or a line hypergraph. If a star hypergraph is stable, it must have
a singleton center. Generally, a hypergraph can be underconnected, but cannot be
overconnected.
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1 Introduction

Economic agents often share information only with some group of people by forming

an informal or formal organization (or association) such as academic associations, social

clubs, research joint ventures etc. Various kinds of associations engage in many other
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Seoul National University in February of 2007 for helpful comments. Corresponding author: Department
of Economics, Kyung Hee University, 1 Hoegidong, Dongdaemunku, Seoul 130-701, Korea, (Tel) +822-
961-0986, (Email) jyookim@khu.ac.kr
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activities in addition to sharing information all of which could be understood as benefiting

the members through their collaborations.

Such associations are, however, neither exclusive nor comprehensive. Some agents may

join in several associations, while others may join in no association. Many associations

have overlapping members. The members overlapped in more than one association may

play the role of mediating information between associations. Thus, through the mediator,

an agent can get indirect benefits from the association to which he does not belong.

Joining in an association does not only yield (direct and indirect) benefits but also incurs

some costs. For example, a member should pay the membership fee and perform some

duty to sustain his association.

We will call a set of associations a hypergraph. It is a generalization of a graph (or

a network) in graph theory. While a link in a network directly connects only a pair of

nodes, an association in a hypergraph connects any number of nodes. While a link in a

network can be formed by the joint decision of two players, an association in a hypergraph

can be formed by the joint decision of any number of players more than one.

In a hypergraph, a player can share the value of people who join in the same asso-

ciation, thereby getting direct benefits from joining in an association. In addition, he

enjoys indirect benefits from members in different associations who are indirectly con-

nected through the member of his association. Indeed, the value from indirect connection

is discounted. On the other hand, the cost of maintaining an association consists of the

fixed cost and the variable cost proportional to its size. The total maintaining cost of an

association is shared equally by its members.

In this paper, we will define the efficiency and the stability of a hypergraph by extend-

ing the concept of efficiency and stability of a network by Jackson and Wolinsky (1996).

The efficient hypergraph is defined by the one that maximizes the sum of the net benefit

of all the players. A hypergraph is defined to be stable if no player has an incentive to exit

unilaterally from any of his associations, and no coalition of players has joint incentives

to form a new association.

We define a hierarchical hypergraph by the hypergraph that contains an association

with its subassociation. Then, we can show that a hierarchical hypergraph can be neither

efficient nor stable. Intuitively, this is because any player in a subassociation can be

made better off by exiting from the subassociation without affecting the payoff of players

outside the subassociation. Then, we mainly characterize the efficient hypergraphs and

stable hypergraphs. The efficient hypergraph is either the empty hypergraph or the grand

hypergraph consisting of a single grand association. The stable hypergraph can be a grand

hypergraph, a star hypergraph or a line hypergraph. A circle hypergraph cannot be stable

if the number of players is more than three. This is because there is no such cost structure
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that is high enough to make it unprofitable to form a grand association and, at the same

time, that is low enough to prevent any player from exiting out of his association. We

also show that a stable star hypergraph must have a singleton center. The reason is

also similar. Since a player’s gain from joining in the grand association is larger than

his loss from exiting out of his association, there is no cost structure preventing both

incentives. The tension between efficiency and stability that is identified by Jackson

and Wolinsky is reconfirmed in hypergraph formation. We demonstrate, however, that

a stable hypergraph can be underconnected but not overconnected, which is contrasted

with Jackson and Wolinsky.

There are closely related papers. Myerson ((1980) was the first to introduce the con-

cept of hypergraph into economics. However, he did not consider the problem of forming

a hypergraph. Moreover, he interpreted a conference (or association) in a hypergraph as

a group of people who can collaborate with one another only if all of them are present.

Aumann and Drèze (1974), and Hart and Kurz (1983) studied a game with coalitional

structures. An association in a hypergraph is similar to a coalition in a coalition structure

in the sense that its members can communication with one another as if it were exactly a

complete network, but the one differs from the other because associations can overlap with

each other unlike coalitions in a coalition structure. Slikker et al. (2000) also consider the

problem of hypergraph formation. However, they adopt Myerson’s interpretation of hy-

pergraphs as a group of players who can communicate only when all of them are present,

which leads to different architecture of a hypergraph.

The paper is organized as follows. In Section 2, we introduce some definitions in graph

theory. In Section 3, we set up the model. In Section 4, we define the efficiency and the

stability of a hypergraph and characterize efficient hypergraphs and stable hypergraphs in

the case that the variable cost of forming an association is linear in its size. In Section 5,

we will examine how our results can be affected in the case of the convex variable cost. In

Section 6, we will compare our concept of the stable hypergraph with the strongly stable

network. Concluding remarks will follow in Section 7.

2 Definitions

Let N be a set of players with |N | = n < ∞. A hypergraph H is defined by a family of

subsets of N , {A}, with |A| ≥ 2.1 We will denote the set of all possible hypergraphs on N

by H. An element A of a hypergraph is called an association. The size of an association

A is defined by |A|. All members in an association can communicate with one another

1A hypergraph is a generalized concept of a graph (or a network) because it includes A with |A| = 2.
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without friction. Associations are not mutually exclusive, so that a player can participate

in more than one association. If A  B for some A, B ∈ H, we call A a subassociation of

B. A hypergraph H is called hierarchical if some association A ∈ H has a subassociation.

Many concepts for graphs can be extended to hypergraphs. We can define a path

in H between players i and j by a sequence (i, i1, i2, · · · , ik, j) such that i, i1 ∈ A0,

i1, i2 ∈ A1, · · · , ik, j ∈ Ak for some A0, · · · , Ak ∈ H, and say that the path has the length

of k. If there is a path between i and j, we say that i and j are connected. In particular,

if i, j ∈ A for some A ∈ H so that the path between i and j has the length of 0, we say

that they are directly connected. The distance between two players i and j is defined

by the length of the shortest path between them and denoted by t(i, j). If i and j are

directly connected, t(i, j) = 0. We define t(i, j) = ∞ if i and j are not connected.

We define the degree of player i by the number of players to whom player i is directly

connected, and denote it by d(i). We will call a hypergraph complete if d(i) = n−1 for all

i ∈ N . Note that the complete hypergraph is not unique. We will call a hypergraph H =

{N} the grand hypergraph and denote it by Hn.2 A hypergraph H is called connected if

there is a path for any distinct players i, j ∈ N . If a hypergraph is not connected, the set

N is partitioned into several disjoint connected components.3 We will call a component

consisting of a single player a trivial component. If all components in a hypergraph are

trivial, it is called the empty hypergraph and denoted by H0.

We can define a star, a line and a circle as follows. Let H = {Ak | 1 ≤ k ≤ m(≥ 2)}.
We will call a hypergraph H a star and denote it by H∗ if there exists a nonempty subset

R ⊂ N such that Ai∩Aj = R and R  Ak for all i, j, k. The set R will be called centers of

H∗ and the set H∗\R called peripheries. We will call a hypergraph H a line and denote it

by H l if Ak ∩Ak+1 = Lk 6= ∅, Lk  Ak, Ak+1, and Ak ∩Aj = ∅ for j 6= k− 1, k + 1 and for

1 ≤ k ≤ m− 1. Finally, a circle will be defined by Hc ≡ H l ∪Am+1 where Aj ∩Am+1 6= ∅
for j = 1,m and Aj ∩ Am+1 = ∅ for j 6= 1,m. Note that hierarchical hypergraphs are

excluded from stars, lines and circles by the conditions that R  Ak and Lk  Ak, Ak+1.

We will denote by H + A the hypergraph obtained by adding an association A to H

and by H − A the hypergraph obtained by eliminating an association A from H. Also,

if there is no chance of confusion, we will use the notation of H − i(A) to mean the

hypergraph obtained by player i’s exit from the association A. In other words, H − i(A)

and H − (A− A \ {i}) are equivalent.

2In fact, it is the minimal complete hypergraph in the sense that it contains the minimum number of
elements among all complete hypergraphs.

3A component C can be defined by a set of players in N such that i, i ∈ C if and only if i and j are
connected.
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3 Model

We consider the connections model developed by Jackson and Wolinsky (1996) with a

modification of replacing links by associations.

Each player has a value normalized to one. Players can share their values by organizing

an association. Players can also get indirect benefit from indirectly connected players.

Let {τ ∈ =i | Ai,τ} be sets of associations to which player i belongs and define

Ai = ∪τ∈=i
Ai,τ . The total benefit of player i from hypergraph H is then

Bi(H) = 1 + d(i) +
∑

j 6∈Ai

δt(i,j),

where δ ∈ (0, 1) is the discount factor.

On the other hand, it is costly to form an association. We assume that the cost of

organizing an association A is C(A) = c0 + c|A|, where c0, c > 0. We can think of c0 the

cost of installing the hub (dummy player, coordinator, secretary etc.) of the association,

and c as the cost that the coordinator disseminates information to each member. We also

assume that this cost is shared equally by the members of A. The cost of player i from

the hypergraph H is then

Ci(H) =
∑

τ∈=i

C(Ai,τ )

|Ai,τ | .

Thus, the payoff (net benefit) of player i is πi(H) = Bi(H) − Ci(H). We can also

define the value from hypergraph H by V (H) =
∑

i∈N πi(H).

4 Efficiency and Stability

We can generalize two central concepts, efficiency and stability, by Jackson and Wolinsky

(1996) to the formation of hypergraphs.

The hypergraph H is efficient if it maximizes the sum of net benefits, i.e., V (H) ≥
V (H ′) for all H ′ 6= H. On the other hand, the hypergraph H is stable if (I) for any

A ∈ H and for any i ∈ A, πi(H) ≥ πi(H − i(A)), and (II) for any S 6∈ H and for

any i ∈ S, πi(H + S) > πi(H) implies πj(H + S) < πj(H) for some j ∈ S. In words,

the stability of a hypergraph requires that no player has an incentive to exit from an

association unilaterally, and that no coalition of more than one player has the incentive

to form a new association collectively.

4.1 Efficient Hypergraph

A series of lemmas are in order.
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Lemma 1 A hierarchical hypergraph cannot be efficient for any C(A) and δ.

Proof. See the appendix.

Lemma 1 can be strengthened by the following lemma.

Lemma 2 If S(6= ∅) ⊂ N is contained in more than one association in H, H cannot be

efficient for any C(A) and δ.

Proof. See the appendix.

This lemma implies that the efficient hypergraph must have k(≥ 1) disjoint subsets

and each of the associations constitutes a component. Thus, the only possible efficient

hypergraph among complete hypergraphs is the grand hypergraph, and the efficient hy-

pergraph other than the grand hypergraph must be disconnected.

Lemma 3 The efficient hypergraph cannot contain more than one nontrivial component

for any C(A) and δ.

Proof. See the appendix.

This lemma characterizes efficient hypergraphs.

Proposition 1 The unique efficient hypergraph is Hn if c̃(n) ≡ c + c0
n

< n− 1 and is H0

if c̃(n) > n− 1.

Proof. See the appendix.

We can interpret c̃(n) and n−1 as an increase in per player cost and benefit respectively

when the hypergraph is changed from H0 to H∗. Proposition 1 says that the efficient

hypergraph must be either the empty hypergraph if the increase in the cost exceeds the

increase in the benefit, or the grand hypergraph otherwise.

It deserves comparing this proposition with the result of Jackson and Wolinsky. Two

striking differences are in order. First, the star structure cannot be an efficient hypergraph,

while it can be an efficient network in the model of Jackson and Wolinsky. This contrasted

feature is the direct consequence of Lemma 2 which has the implication that an indirect

connection can never be efficient in hypergraph formation. This result comes mainly from

the assumption of cost structures. The crucial intuition for the efficient star in network

formation is that an indirect link between a pair of agents can be more efficient than a

direct link between them, i.e., 1−c > δ where c is the cost of forming a direct link.4 In our

4Here, we are abusing notation c.
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model, it is not possible, that is, an indirect connection is always less efficient than a direct

connection made by forming one large association encompassing all the agents involved in

the connection structure. For example, a structure with two links between player 1 and 2

and between player 2 and 3 is inferior to one with the association {1, 2, 3}. By including

all the involved players into one association, one could save the fixed cost and reduce the

variable cost as well. Note that the variable connection cost increases with the size of

an association, while the connection cost of a complete network increases geometrically

with the size of the network. Second, the efficient hypergraph does not depend on δ,

unlike the efficient network identified by Jackson and Wolinsky. This observation is a

direct corollary of the first observation. Since Lemma 2 holds regardless of the size of

δ, overlapping associations implying indirect connections cannot be constituent of the

efficient hypergraph; hence, no indirect benefit in the efficient hypergraph.

4.2 Stable Hypergraph

While the efficient hypergraph is expected to emerge in a centralized environment, a stable

hypergraph can be formed in a decentralized environment as a consequence of the decision

of each player maximizing his own payoff. After characterizing stable hypergraphs, we

will compare them with the efficient hypergraph.

Lemma 4 A hierarchical hypergraph cannot be stable for any C(A) and δ.

Proof. See the appendix.

Due to Lemma 4, we can restrict our attention to non-hierarchical hypergraphs for

stability. Nonetheless, it is still burdensome to check whether a given hypergraph satisfies

condition (II) of stability, since the number of all possible hypergraphs, |H| = 2ℵ where

ℵ = 2|N | − |N | − 1, is tremendously large. The following lemma provides a sufficient

condition for condition (ii).

Lemma 5 Let i0 = arg mini∈N Bi(H) for a non-hierarchical hypergraph H 6= Hn. Then,

H satisfies condition (II) if πi0(H) ≥ πi0(H + N).

Proof. See the appendix.

Lemma 5 will turn out to be useful in characterizing stable hypergraphs. We have

Proposition 2 (i) The grand hypergraph is stable if and only if c̃(n) < n− 1.5 (ii) Any

star hypergraph with |R| = 1 is stable if c̃(2) < 1 and c̃(n) > (1 − δ)(n − 2). (iii) Any

5We are assuming that a tie in payoffs is resolved in favor of deviation.
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line hypergraph with |L1| = |Lm| = 1 is stable if c̃(2) < 1 and c̃(n) >
∑n−2

t=1 (1 − δt).

(iv) If n ≥ 4, a circle hypergraph cannot be stable. A circle can be stable if n = 3 and

c̃(2) < 1− δ.

Proof. See the appendix.

Proposition 2(i) says that the grand hypergraph is stable if and only if it is efficient.

Proposition 2 (ii) and (iii) suggest that the hypergraph can be underconnected in the

sense that a star hypergraph or a line can be stable when c̃(n) < n − 1, i.e., the grand

hypergraph is the unique efficient hypergraph. The intuition for this is that although the

grand hypergraph is efficient, players cannot break up the status quo associations and

reorganize the grand association. It is less beneficial for players to organize the grand

association with maintaining their current associations than to move from the empty

hypergraph to the grand hypergraph. The intuitive reason for Proposition 2(iv) is that

the cost high enough to discourage players from organizing the grand association cannot

prevent the incentive to exit from a small association. Then, why can a line be stable

although a circle cannot be? This is because it is more tempting for an agent to exit in

a circle than in a line. He loses the benefit much less in a circle, as he still maintains an

indirect connection with other agents even after he exits from one association in a circle.

Proposition 2 (ii) only provides sufficient conditions for the stability of a star hyper-

graph, but indeed a star hypergraph with |R| ≥ 2 cannot be stable.

Proposition 3 A star hypergraph with |R| ≥ 2 cannot be stable.

Proof. See the appendix.

The main reason for this proposition is that the loss in benefits occurring when an

agent exits from the center with |R| ≥ 2 is much smaller than when |R| = 1. Let us

elaborate on the intuition. For the grand association to be unprofitable, the per capita

formation cost should be high enough that c̃(n) > (1− δ)(n− 2). However, in that case,

an agent in R with |R| ≥ 2 does have an incentive to exit from one of his association,

because c̃(m) > c̃(n)
n−2

> 1− δ for any m ≥ 3. If the center of a star is a singleton, however,

it can be stable if discounting is large, because the loss from the center’s exit out of an

association which does not depend on the discount factor can be larger than the gain from

joining in the grand association which gets smaller as discounting is larger.

Proposition 4 The stable hypergraph cannot be overconnected, i.e., no other hypergraph

than the empty hypergraph is stable if c̃(n) > n− 1.

Proof. See the appendix.
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The reason for the possibility of underconnectivity is crystal clear. The usual intuition

applies; players do not take into account the positive externality that they could generate

by forming an association. The possibility of overconnectivity in network formation by

Jackson and Wolinsky was due to the possible coordination failure.6 Since coordination

by more than two people is allowed in a hypergraph, it is difficult that a hypergraph is

overconnected due to coordination failure. In fact, all efficient hierarchies are symmetric

among players. So, coordination among them cannot be a problem.

5 Convex Variable Cost

Suppose that the variable cost of forming an association is convex in its size rather than

linear. In particular, we assume that C(A) = c0 + c|A|k for k ≥ 2. Also, let c̃(m) =

cmk−1 + c0
m

where m = |A|.
With the convex cost structure, Lemma 2 does not hold any more while Lemma 1

is still valid. The intuitive reason is that if the variable cost increases too rapidly with

the size of an association, it may be more efficient to separate the members into several

associations even though some of the members may overlap in more than one association.

This suggests that the efficient hypergraph is not necessarily of an extreme form, either

empty or grand. As an example, take the case that k = 2 and n = 3. A star H∗ is more

efficient than Hn which dominates Hc, if π(Hn)− π(H∗) = 2(1− δ) + c0 − c < 0, i.e., if

c > 2(1 − δ) + c0. Also, H∗ is more efficient than H0 which dominates the hypergraph

with only one association of size two, if c < 2+δ−c0
4

. Therefore, when c0 = 1
2

and δ ≈ 1,

H∗ will be efficient for c ∈ (1
2
, 5

8
).

Proposition 3 is also not robust to a variation to the convex cost function. For example,

let |R| = r ≥ 2 and |A| = m in a star H∗. Then, player i ∈ A \ R has no incentive to

form a grand association if c̃(n) > (1 − δ)(n −m). Now, since we know that one of the

centers is more likely to deviate than any peripheral player, we will consider the incentive

of player j ∈ R to exit from his association A. We have

∆πj(H
∗) = πj(H

∗ − A)− πj(H
∗) = c̃(m)− (1− δ)(m− r),

and thus
d∆πi(H

∗)
dm

= −(1− δ − c)m2 + c0

m2
.

6When the star network is efficient, coordination failure may occur if no one wants to be the center
who will get the lowest payoff.
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If c < 1− δ, we have d∆πi(H
∗)

dm
< 0 and so ∆πi(H

∗) attains its maximum at m = 3.7 Take

r = 2. Then, player j would not exit if c̃(3) < 1− δ. If k = 3 and n = 4, there is δ ∈ (0, 1)

such that c̃(3) < 1− δ < c̃(n)
n−3

because c̃(3) < c̃(n)
n−3

. In this case, H∗ = {{1, 2, 3}, {1, 2, 4}}
is stable. The main intuition is that if the cost function is convex, a center’s exit from

a small association of a star may not lead to a reduction of the per capital cost while it

reduces the benefit, i.e., he will not exit, thus implying that a star can be stable. Note

that the exit of a center from an association always reduce its per capital cost if the cost

function is linear.

6 Strong Stability

Our concept of stability in a hypergraph has common with the concept of strong stability

in a network proposed by Dutta and Mutuswami (1997) and Jackson and Nouweland

(2005), in the sense that both possibly allow joint deviations by more than two players.

In this section, we will briefly discuss how they are related and how they differ.

Jackson and Nouweland (2005) define a network to be strongly stable, rougly speaking,

if for any coalition S ⊂ N , (i) any player in S has no incentive to break his link and (ii)

any number of pairs in S has no incentive to form new links.8 If we rephrase our definition

in terms of the network, a hypergraph is stable if no coalition S has an incentive to form a

complete network among them. Moreover, they allow more than one player to sever their

links or a player to sever his link and simultaneously form a new link with another. None

of them is allowed in our definition. Since fewer deviations are allowed in our definition,

a strongly stable network implies a stable hypergraph but not vice versa. For example,

consider a star H when n = 4 and let player 1 be the center. If we assume that c = c0

for simplicity, the stability of the hypergraph requires that (i) c + c/4 > 2(1 − δ) and

(ii) c + c/2 < 1. Now, to check the strong stability, suppose that player 4 exits from his

current association with player 1 and makes a new association with player 2 and player

3. Then, the gains of each player in the new association is

∆B4(H) = c +
c

2
+ 2(1− δ)− (1− δ)−

(
c +

c

3

)
=

c + 6(1− δ)

6
> 0,

∆B2(H) = ∆B3(H) = 2(1− δ)−
(
c +

c

3

)
=

2(3− 2c− 3δ)

3
> 0, if c < 3

2
(1− δ).

7Also, note that ∆πi(H∗) increases with r, in other words, that the larger r is, the smaller the decrease
in the benefit from the exit, and thus the more likely player j is to deviate.

8The definition of strong stability by Dutta and Mutuswami is almost the same, except an inequality
in the definition.
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Thus, the strong stability requires that c < 3
2
(1−δ). Therefore, if 3

2
(1−δ) < c < 8

5
(1−δ),

a star is not a strongly stable network, although it is a stable hypergraph.

7 Conclusion

In this paper, we defined the efficiency and the stability of the hypergraph and charac-

terized efficient hypergraphs and stable hypergraphs for the linear cost function.

The hypergraph is a general concept encompassing the concept of network, and can

be applied to economics in a more flexible manner. For example, the formation of free

trade agreements (FTA) is the outcome of multilateral negotiations among possibly more

than two countries. Although many authors model this process as network formation

allowing only bilateral decisions,9 we believe that it will be more relevant to view FTAs

as associations and the process of forming them as the formation of a hypergraph allowing

multilateral decisions. We look forward to a richer variety of economic applications in the

near future.

Appendix

Proof of Lemma 1:

Suppose that there are A,A′ ∈ H such that A′ ( A. Define H ′ = H − A′. Then, for

any i ∈ A′, Ci(H
′) < Ci(H) but Bi(H

′) = Bi(H), thus πi(H
′) > πi(H). Also, it is clear

that πi(H
′) = πi(H) for any i 6∈ A′. Therefore, V (H ′) > V (H). This implies that H

cannot be efficient.

Proof of Lemma 2:

Let A,A′ ∈ H (A 6= A′) be two associations such that S ⊂ A,A′. Define H ′ by

H ′ = H−(A+A′)+(A∪A′). Then, C(A∪A′) < C(A)+C(A′) since |A∪A′| < |A|+ |A′|.
Therefore, V (H ′) > V (H).

Proof of Lemma 3:

Suppose that A1, A2 ∈ H with A1 ∩ A2 = ∅, |A1| = n1 and |A2| = n2 for n1, n2 ≥ 2.

Take any node i ∈ A2 and define H ′ = H − (A1 + A2) + A1 ∪ A2. Then, it is clear

that
∑

i∈A1∪A2
Bi(H

′) >
∑

i∈A1∪A2
Bi(H) and that

∑
i∈A1∪A2

Ci(H
′) <

∑
i∈A1∪A2

Ci(H).

Therefore, V (H ′) > V (H).

9See, for example, Furusawa and Konishi (2002), and Goyal and Joshi (2006).
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Proof of Proposition 1:

By Lemma 3, there must be at most one nontrivial component in the efficient hyper-

graph. Also, it must consist of one association by Lemma 2. Let Hm be the hypergraph

with a nontrivial component association of size m ≥ 2 and let H1 ≡ H0. Then, the

efficient hypergraph must be Hm for some m ≥ 1. Let the possible nontrivial component

be A ∈ Hm. Now, consider H ′ = Hm − A + A ∪ {i} for some i 6∈ A. Then, we have

∆B(Hm) ≡
∑
i∈N

Bi(H
′)−

∑
i∈N

Bi(H
m) = (m + 1)2 − (m2 + 1) = 2m, (1)

∆C(Hm) ≡
∑
i∈N

Ci(H
′)−

∑
i∈N

Ci(H
m) =

{
c0 + 2c if m = 1

c if m ≥ 2.
(2)

Note that ∆B(Hm) = 2m is increasing in m. By comparing equation (1) and (2), we can

see that V (H2) > V (H1) if and only if c0 + 2c < 2, and that V (Hm) is increasing in m

for all m ≥ 2 if and only if c < 4. Thus, if c < 4, the efficient hypergraph is either H1 or

Hn. If c > 4, V (Hm) is decreasing in m for all m ≥ 2. Hence, the efficient hypergraph

is either H1 or H2. In particular, H2 would be efficient if and only if c0 + 2c < 2, but it

is not possible as far as c > 4. Hence, the only possible efficient hypergraph in this case

is H1. Comparing the values V (H1) and V (Hn) directly shows that V (H1) Q V (Hn) if

and only if c̃(n) R n− 1.

Proof of Lemma 4:

For any A,B ∈ H such that A  B, we have πi(H − i(A)) > πi(H) for any i ∈ A,

since Ci(H − i(A)) < Ci(H) and Bi(H − i(A)) = Bi(H).

Proof of Lemma 5:

For any association A 6∈ H with |A| = m and for any i ∈ A, we have

∆Ci(H) ≡ Ci(H + A)− Ci(H) = c +
c0

m
.

Since ∆Ci(H) is decreasing in m, it is smallest when m = n. Also, it is clear that

maxA Bi(H +A) = Bi(H +N). Thus, condition (II) is satisfied if any player i ∈ N has no

incentive to join in the grand association N . In fact, this is the case if πi0(H) ≥ πi0(H+A),

because πi(H + N)− πi(H) = Bi(H + N)−Bi(H)−∆Ci(H) ≤ n−Bi0(H)− (c + c0
n
) =

πi0(H + N)− πi0(H) ≤ 0 for all i ∈ N .

Proof of Proposition 2:

(i) By Lemma 4, we only need to check whether the grand hypergraph is stable. Define

H ′ = Hn−i(N) for any i ∈ N . Then, Bi(H
n)−Bi(H

′) = n−1 and Ci(H
n)−Ci(H

′) = c̃(n).

12



Therefore, player i ∈ N will not exit if and only if c̃(n) < n−1. It is clear that Hn satisfies

the second condition of stability.

(ii) If player i ∈ R exits from any Ak, his loss in benefits is

∆Bi(H
∗) =

{
|Ak| − 1 if |R| = 1

(1− δ)|Ak \R| if |R| ≥ 2,

and his cost saving is ∆Ci(H
∗) = c + c0

|Ak| .
If |R| = 1, ∆πi(H

∗) = ∆Ci(H
∗) −∆Bi(H

∗) = c + c0
|Ak| − (|Ak| − 1) has the maximal

value of c + c0
2
− 1 when |Ak| = 2. In this case, player i ∈ R has no incentive to exit from

Ak if

c +
c0

2
< 1. (3)

If |R| ≥ 2, ∆πi(H
∗) = c+ c0

|Ak|−(1−δ)(|Ak|−|R|) has the maximal value of c+ c0
3
−(1−δ)

when |Ak| = 3 and |R| = 2. In this case, player i ∈ R does not exit from Ak if

c +
c0

3
< 1− δ, (4)

and otherwise, he exits.

Next, consider the incentive of player j 6∈ R to exit. If he exits from some Ak,

∆Bj(H
∗) > ∆Bi(H

∗) and ∆Cj(H
∗) = ∆Ci(H

∗). Therefore, if a player in R does not

exit, neither does he.

Now, consider the incentive to form a new association. By Lemma 5, we only need to

find player i0 = arg mini Bi(H
∗). Clearly, i0 ∈ Ak for some Ak with |Ak| = 2 and i0 6∈ R,

and thus, Bi0(H
∗) = 2 + δ(n − 2). Hence, we have ∆Bi0(H

∗) = n − (2 + δ(n − 2)) =

(1− δ)(n− 2) and ∆Ci0(H
∗) = c + c0

n
. Therefore, if ∆Ci0(H

∗) > ∆Bi0(H
∗), i.e.,

c̃(n) ≡ c +
c0

n
> (1− δ)(n− 2), (5)

no player will join in any new association by Lemma 5. Note that inequality (4) and

(5) are not compatible with each other. Therefore, H∗ is stable if c̃(2) < 1 and c̃(n) >

(1− δ)(n− 2), and in this case it must be that |R| = 1.

(iii) Consider the exit incentive. Suppose a player i ∈ Lk exits from his association(s),

Ak or Ak+1. The loss in his benefits has the minimal value of 1 when player i ∈ L1 exits

from A1 with |A1| = 2. In this case, his cost saving is maximal, i.e., ∆Ci(H
l) = c + c0

2
.

Thus, no player will have an incentive to exit if c + c0/2 < 1 (inequality (3)). If |Lk| ≥ 2,

the minimal loss is 1 − δ when player i ∈ L1 exits from A1 with |A1| = 3 and |L1| = 2.

In this case, his cost saving is maximal, ∆Ci(H
l) = c + c0

3
. Thus, no player will have an

incentive to exit if c + c0/3 < 1 − δ (inequality (4)). Also, we know that player j 6∈ Lk

does not exit from his association for any k if player i ∈ Lk does not exit for any k.
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Finally, consider the incentive to form the grand association. By Lemma 5, we only

need to find player i with minimal Bi(H
l). It is easy to see that player i ∈ A1 has

the minimal Bi(H
l) when |Ak| = 2 for all k. Therefore, no player will join in any new

association if

c̃(n) >

n−2∑
t=1

(1− δt). (6)

Again, inequality (4) and (6) are not compatible. Therefore, any H l with |L1| = |Lm| = 1

is stable if c̃(2) < 1 and c̃(n) >
∑n−2

t=1 (1− δt).

(iv) Consider the incentive to exit from some Ak. Clearly, ∆Ci(H
c) = c + c0

|Ak| . It is

also clear that the loss in benefits has the minimal value of 1− δ when player i ∈ A1 ∩A3

exits from either association where Hc = {A1, A2, A3} and |A1| = |A2| = |A3| = 2. In this

case, ∆Ci(H
c) is minimal, i.e., c̃(2). Thus, no player will exit if

c̃(2) < 1− δ. (7)

Also, we know that no player will join in the grand association if

c̃(n) >

{
2
∑n

2
−1

t=1 (1− δt) if n is even

2
∑n−1

2
t=1 (1− δt) if n is odd,

(8)

provided that n ≥ 4. Note that inequality (7) and inequality (8) are not compatible,

implying that a circle hypergraph cannot be stable. If n = 3, it is clear that no player will

join in the grand association. Therefore, in this case, a circle is stable if (7) is satisfied.

Proof of Proposition 3:

Consider a star H∗ = {Ak | k = 1, · · · ,m} for m ≥ 2. Suppose H∗ is stable. Then,

by condition (i) of stability, it must be that no peripheral player i ∈ Ak has an incentive

to exit from Ak for any k. This requires that

c +
c0

|Ak| < (|Ak| − |R|) (1− δ). (9)

Also, by condition (ii) of stability, there must be no new association to be formed. Note

that any center has no incentive to join in a new association, because his gain from it

is zero. This means that a profitable new association must consist only of peripheries.

Consider a new association consisting of all the peripheral nodes. Since the number of

peripheries is n− |R|, it requires that

(|Ak|+ m− 2)(1− δ) + α < c +
c0

n− |R| . (10)
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We have |Ak| − |R| < |Ak| + (m − 2) for all k. Also, we have |Ak| < n − |R| for

some k. This is because
∑

k(|Ak| − |R|) >
∑

k n − |R|. Since c + c0
Ak

> c + c0
n−|R| and

|Ak| − |R| < |Ak|+ m− 2, inequalities (9) and (10) are contradictory, which implies that

H∗ cannot be stable.

Proof of Proposition 4:

Suppose H 6= H0 is stable. If a player i exits from some A ∈ H, the cost reduction

is ∆Ci(H) ≥ c̃(n) and a decrease in the benefit is ∆Bi(H) cannot exceed n− 1 which is

maximal. Therefore, we have ∆Ci(H) ≥ c̃(n) > n−1 ≥ ∆Bi(H). This means that player

i always has an incentive to exit from his association. Hence, H 6= H0 cannot be stable.
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